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Abstract—An increasing number of higher order theories for the analysis of laminated plates has
been published recently. However, there is as yet a lack of rigorous information about a sensible
range of application. To help remedy this deficiency, seven different theories with displacement
functions valid for the complete plate thickness are compared against the exact three-dimensional
elasticity solution. Rectangular plates with varying slenderness ratios, layer numbers and thick-
nesses, edge ratios, and material property relations are examined. Comparing their displacements
and stress distributions reveals application limits for the classical lamination theory as well as
advantages and disadvantages of the respective higher order theories. Therewith, guiding rules
evolve for a reliable and efficient bending analysis of layered compaosite plates.

L INTRODUCTION

Plates out of fiber-reinforced materials have been built and analyzed for many years. The
busis for the computations was, and still is in most cases. the so-called classical lamination
theory (CLT), a straightforward extension of the Kirchhoff (1850) plate theory towards
layered anisotropic material. Both theorics negleet transverse shear strains, the effect of
which is known to be small for slender plates. Fiber-reinforced material, however, is more
susceptible to transverse shear than its isotropic counterpart, thus reducing the range of
applicability of CLT. Adopting Mindlin’s (1951) theory, Whitney and Pagano (1970)
refaxed this restriction. But the advancement had to be puid for by two additional functional
degrees of freedom : the shear rotations. Nevertheless, the theory is very popular with finite
element developers because it needs CU-continuous functions only. Unfortunately, there is
still some uncertainty concerning suitable transverse shear stiffnesses of layered composite
plates.

Recently, an increasing number of “higher order™ theories for layered plates has been
published. The term indicates that the displacement distribution over the plate thickness is
represented by polynomials of higher than first order. In general, a higher approximation
will fead to better results but also requires a more expensive computational effort. There is
as yet little information about advantages and disadvantages of the various approaches; a
potential user has hardly any criterion to decide which theory is most suitable to solve this
problem.

In order to provide some insight into the range of applicability and the power of the
various theories, computational results will be presented. The study will be confined to
theories with continuous displacement functions across the complete plate thickness; layer-
wise approximations are not considered. Bending and transverse shear of symmetrically
stacked plates will be treated. The exact three-dimensional (3-D) elasticity solution after
Pagano (1970) will be applied as a yardstick. Since this solution is available only under
certain conditions the test problem cannot be arbitrary. It includes, however, varying
slenderness ratios, material property relations, edge ratios and layer numbers. Therewith,
it will be general enough so that a comparison with the corresponding results obtained from
the different plate theories can yield useful information about their scope.
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106 K. ROHWER
2. SPECIFICATIONS OF EXAMINED PLATE THEORIES

Plates are defined as structural components with a thickness much smaller than the in-
plane dimensions. That allows one to separate the dependency on the thickness direction
and to assume distribution functions for the displacements. It leads to two-dimensional
theories which reduces the computational effort required for the solution. A general for-
mulation based on this procedure is presented by Reddy (1987). The higher order theories
cun be looked upon as special cases thereof. But in order to elucidate the ditferences it is
necessiary to describe the assumptions in more detail.

As a common and useful practice. the plate behavior will be described in the frame of
a Cartesian coordinate system (x. v, 2). where the x- and y-uxis specity the reference plane
and the z-axis runs in the thickness direction. Displacement components in x-, v- and z-
directions are named u. ¢ and w. respectively (cf. Fig. 1).

Constant in-plane displacements would describe membrane deformations which are
not considered here. To allow for bending deformations the most simple approach is

u 0 u,
rp =180+, (H
w Wy 0

It forms the basis for the Whitney-Pagano (1970) theory as well as for the CLT. Neglecting
the normal stresses tn z-direction and climinating the corresponding strains changes the
definition of the bending stiffnesses. Only the treatment of transverse shear s dilferent
between the two theories. CLT completely neglects transverse shear strains, which relates

", Cwy/cx 2)
r Cwaicr)’

Therewith, the only functionad degree of freedom feft is w,. Whitney and Pagano (1970)

wy and ¢y to the derivatives of w:

The integral of the shear modulus over the thickness must be reduced because of non-
constant shear stresses. Several attempts were made to derive generally valid reduction
factors, but Wittrick (1987) proved that for orthotropic material it is impossible to choose
ctfective shear moduli independent of the displacement mode. FFollowing a proposal by
Lehar (1984) the author (Rohwer, 1988) hus assumed two cylindrical bending modes to sct
up a procedure which provides improved values. In the following these values are used
exclusively when applying the Whitney - Pagano theory.
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Fig. [. Test plate configuration.
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Increasing the in-plane displacement approximation order to quadratic polynomials
would not make much sense, because the condition of vanishing transverse shear strains at
the upper and lower plate surface eliminates the quadratic components. Therefore. the
simplest higher order theories along this line are based on

u 0 uy Uy
rp =90 +{e,prz+vypnct 3)
w Wo 0 0

A reduction of the number of functional degrees of freedom is desirable, but the way it is
performed differs between the different authors.

Murthy (1981) introduced new variables which he obtained by means of averaging in-
plane displacements and rotations through the thickness with the aid of a least-square
approximation. Thus he defined mean rotations

=il
1% S E

which are related to the initial functions by

B, u, n? u,
{ﬂ.} - {}* 30 {} ©

The final distribution over = of the in-plane displacements then reads

ul S5 75 VLA [_ 5 i dwe/ox
{} = (4 T >{/f,}+ (4 T >{/»} ©

Transverse shear strains based on these displacement functions are more realistic
than in the case of the Whitney-Pagano theory. Accordingly, a correction factor for the
corresponding stiffnesses is no longer necessary. Murthy used the same equilibrium equa-
tions as Whitney-Pagano. Duc to the definition of mean rotations, however, they cannot
be derived via the principle of virtual displacements.

Reddy (1984) used the condition of vanishing transverse shear strains at the upper and
lower surface not only to eliminate the quadratic displacement components but also to

replace u; and vy
u,} _ i u, +0wy/dx o
vy) 3R o +éwe/dy )

The distribution over = of the in-plane displucements then reads

u} . u.} RERILL +6w0/6x} ©
v o Uy 3/12 - U +('}wo/ay -

Linear and cubic terms of the displacements lead to two different types of bending and
torsional strains ; they work at two different types of bending and torsional moments. And
there are also two different types of transverse shear strains and transverse shear forces.

Based on Reddy’s theory, Senthilnathan e al. (1987) introduced a further reduction
of the number of functional degrees of freedom by splitting up the transverse displacements
wy into a bending and a shear contribution,

u} +zds, 4)

t
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Wy = Wyt 9)

The rotations are then identified with the derivatives of w, as follows:

u, cwy,, Cx
{ } T { ¢ ¢ }' ( IO)
r, Cw,/Cr

Therewith, the displacement distribution over - reads

u 0 Cw,/Cx ow,/éx
- - 3
S 0 — 90, /Oy — s I Ow/Crp . (1)
v - :
w Wy, 4w, 0 0

As with Reddy’s theory there are still two different types of bending and torsional strains
as well as transverse shear strains. The latter now depend on the contribution w, alone.

Other possibilities for a higher order theory evolve from a displacement approximation
of the type

u 0 1w, 0
=0 0+qe, 07+ 0 Pz (12)

W Wy Wy Ws

Such an approach was introduced by Whitney and Sun (1974) who still used transverse
shear reduction factors. Kwon and Akin (1987) pointed out that vanishing shear strains at
2= +//2 requires wy 1o be zero. Furthermore, they used the same condition to replace the
derivatives of the quadratic component w, by

Ow,/Ey 4 Jr,+wy/dy
- = - 2 - - . ( |3)
Ow,/ix I Ly +Cwyfdx
The remaining functions, wq, uy, v, are identical to those from the Whitney -Pagano theory.
Transverse shear stiffnesses, however, are directly obtained ; no reduction factor must be
introduced.
Reissner (19735) introduced a combination of cubic in-planc and quadratic transverse

displacement approximations. ft was applied to laminated plates by Lo e¢f al. (1977) and
further developed by Pundya and Kant (1988):

u 0 u, 0 i,
rey = 0 + Uy 2+ 0 ':2+ iy .:3. (14)
W Wy 0 W, 0

The development can be extended further along this line whereby the number of functional
degrees of freedom is increased. However. since that number is of major influence on the
necessary computational effort it should be kept as low as possible.

Displacement approximations form the basis for the cited theories. But engineering
applications also require information about the stresses. The following comparison will be
confined to in-plane and transverse shear stresses. Transverse normal stresses are considered
small and therefore explicitly set to zero in most plate theories. That excludes examples
where the free-edge effect is of importance.

In-plane stresses 6. 6, and 1., are in all cases obtained by multiplying the corresponding
strains with the in-plane stiffnesses. These stiffnesses may change from layer to layer
resulting in discontinuous stress functions over the plate thickness. It is noteworthy that
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Table [. Examined plate theories

ID Theory/author Functions

Cl  CLT: Kirchhoff (1850) wo

S2 Senthilnathan et al. (1987) Wy, W,

W3  Whitney-Pagano (1970) Wos Up, Uy

M3 Murthy (1981) wo. B.. B,

R3 Reddy (1984) W, Uy, Uy

K3 Kwon-Akin (1987) Wo. Uy U

P6  Pandya-Kant (1988) Woo Wa, Uy, Uy, Uy, Uy
3D  Pagano (1970) w, U, v

most theories require stiffnesses derived with the aid of a plane stress assumption. The
Pandya-Kant theory. however, uses the original three-dimensional constants.

With the exception of the CLT the transverse shear stresses could also be determined
via the material law. However. better and more comparable results can be expected from
an application of the equilibrium conditions:

o, Ot .

T T ‘f (E.?+ 3y )"--

do, 0Jt,\ .
—J((;T + a )d-. (15)

Derivatives of the in-plance stresses are to be integrated over the thickness, This procedure
will be appliced to all plate theories. It allows us to obtain transverse shear stresses even for
the CLT.

Test caleulations are performed with all theories listed in Table 1. The identifier (ID)
specified in column | indicates an author’s nume or a theory, and the number of functional
degrees of freedom involved. It should be pointed out that in many cases the theories have
been developed by several different authors; the reference cited here may serve as an
indication.

T,

3. TEST PROBLEM DEFINITION

For the intended bending analysis a layered composite plate with rectangular ground
view is considered a suitable test case. Figure 1 shows the configuration. The edge lengths
in x- and y-directions are a and b, respectively; the total thickness is 4. Only symmetric
stacking sequences are taken into account, with z = 0 forming the symmetry plane. The
angle of the fiber reinforcement direction is measured as a positive rotation around the z-
coordinate with the x-axis being the 0°-direction. As a major restriction only 0°- and 90°-
layers can be applied ; for fiber angles other than these no closed-form 3-D elasticity solution
exists.

Boundary conditions along the edges are some kind of simple support with prevented
displacements in both tangential directions and no stresses in the normal direction. With
the condition w = 0 prescribed for the whole edge surface, the well-known edge effect
cannot deveclop. At the upper and lower plate surface normal loads are applied; the
transverse sheir stresses are assumed to vanish, whereas the normal stresses must equalize
the load. In order to simplify the solution procedure the load is chosen to be distributed in
a double cosinc manner. That allows a one-term approximation for every displacement
function. Furthermore, the stresses, too, are represented by single functions in the in-plane
coordinates which excludes stress concentration problems. Table 2 sums up the boundary
conditions. Interface conditions between the layers (k) and (kK + 1) are

k)

Wik = gkt l)‘ (k)

k
i = u(k+l). k) (k+l)’

[A =U

k
0% =g+ gk = gtk % = r}’;"”.
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Table 2. Boundary conditions

Boundary Condition

x=+u?2 W= r=0. g,=0

y=xh2 w=0 u=0 g,=0

= -h2 t.=0. t.=0. 0.= —p-cos(nxa)cos{ny h)
= +h2 1. =0, 0. o.= +p,-cos(rvu)cos(m h)

Therewith, the test problem is sufficiently defined. Actual dimensions and material prop-
erties remain variable.

Pagano (1970) has shown that this type of problem can be solved exactly within the
scope of 3-D elasticity theory. For each layer the boundary conditions along the edges are
satisfied if trigonometric functions of x and v are assumed for the three displacements. In
z-direction exponential functions must be applied, leading to an eigenvalue problem of sixth
order. The unknown coetlicients of the complete solution are determined by interface and
boundary conditions at the upper and lower surface. respectively. That specities a linear
equation system of 61 equations, where n is the number of layers involved.

4. COMPUTATIONAL RESULTS

4.1, Slenderness effect

[tis obvious that the Kirchhoft assumptions hold tor very slender plates. If the thickness
is small cnough, away from the edges there is no room for developing considerable transverse
shear stresses between upper and lower surfaces, where they must vanish because of equt-
librium conditions. Transverse normal stresses must exist at least to equilibrate the load.
But their strain cnergy contribution and therewith their influence on the global dis-
placements must remain small. Finally, the distribution ol in-planc displacements will tend
1o be linear ; higher order distributions would result in selt-cquilibrating stresses which dice
out rather soon in slender plates.

With decreasing slenderness ratios, however, these arguments gradually lose their
validity. Effects which are neglected in the clussical lamination theory will obtain a growing
influence. Depending on the degree of approximation some of these effects are taken care
of by the higher order theories mentioned above. But all higher order theories sufler from
the increased effort required for the sotution. Therefore, as long as the classical lamination
theory yields satistactory results it is the first choice.

Information about the range of applicability of the different theories with respect to
the slenderness ratio will be gathered by meuns of the example specified above. In the first
instance a stacking sequence of [0,90], and material properties as listed in Tuble 3 are
chosen. They represent a conventional carbon HT-fiber reinforced plastic (CFRP). The
plate thickness is kept to unity while the edge lengths are varying with a fixed ratio of

alb =4/D.JD,.. (16)

where D, and D,, arc the bending stiffnesses in x- and y-dircction, respectively. Rather
than unity, this ratio was chosen so that both directions participate equally in carrying the
load. For the 3-D solution half of the load is applied at the upper and the lower surfaces,
respectively. This has no significant influence on the deflection of the reference surface, but
results in an anti-symmetric displacement mode.

Table 3. Material properties for
slenderness test

E, = 1380kN mm *
E;= 93kNmm~™*
Gir= 46kNmm-*
virp= 03
vir= 0.5
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Fig. 2. Center deflection of (0, 90], CFRP plutes, #i = {0.25,0.25)..

As the main indicator for adequacy of the respective theory the center plate deflection
is calculated and depicted in Fig. 2. For a varying slenderness ratio the calculated center
deflection is related to the corresponding value obtained in the 3-D analysis. The deviation
from unity, therefore, represents the eeror inherent in the approximate theory. As could be
expected, the classical lamination theory (Cl) detivers too small deflections. The deviation
increases with reducing slenderness. That can be traced back to the neglect of transverse
shear. For slenderness ratios less than 25 the errors exceed 5%. which in some cases may
not be tolerable so that a higher order theory is recommended.

Initial choice for an tprovement usually is to include transverse shear effects. With
Whitney Pagano’s theory (W3), using transverse shear stiffnesses as proposed by the
present author, the deflections are much better. The fact that they are overestimated may
be due to the equilibrium approach applied in the shear stitfness development, Excellent
accuracy is obtained with the theories of Murthy (M3) and Reddy (R3). whercas Kwon
and Akin'’s (K3) is inferior. This can be explained by the cubic approximation of in-pline
displacements used by Murthy as well as Reddy, while Kwon and Akin proposed a lincar
distribution only. Reasonably good are the results obtained with the theory by Senthilnathun
et al. (82), bearing in mind the reduced effort required for the only two functional degrees
of freedom. Best accurucy cven at slenderness ratios as low as 2.0 is reached following
Puandya and Kant (P6), but that has to be paid for by using six functional degrees of
freedom. Generally it can be stated from Fig. 2 that for slenderness ratios smaller than 5 a
plate theory is hardly suitable to treat the given example.

Besides the center deflection it is the distribution of the in-plane displucements and
stresses over the thickness which indicates the accuracy of the considered plate theory.
Therefore, these tunctions will be compared with those obtained from the 3-D theory.
Maximum values of stresses and displacements will appear at different plate locations. They
are put together in Table 4, To muke the differences in the in-plane displacements obtained
with the various theories more visible, the corresponding values of the classical lamination
theory are subtracted, thereby eliminating a global rotation of the cross-section. The
remainder is then scaled using the respective maximum displacement of the classical lami-
nation theory. The stresses are scaled with p, the maximum of the load function, and with
certain slenderness ratios.

Table 4. Locations of maximum displacements
und stresses

Component Location
u t,, x=ta/2, y=0
[ x =0, y =152
.7, x=0, ryr="0
t., x=4a/l, y=1h2
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Fig. 3. In-plane displacement distribution, a/f = 5.0.

Figure 3 presents the in-plane displacements for a slenderness ratio of 5. Only the
upper half of the cross-section is depicted ; in the lower half the displacement distribution
is anti-symmectric, carrying no further information. That also holds for the 3-D solution,
which is marked by the thick line. Conspicuous is its pronounced nonlinearity which, in
case of the u-displacements, even shows a kink at the layer interface. This certainly cannot
be modeled by the polynomials of the plate theories. The cubic functions as applied by
Murthy (M3). Reddy (R3) and Pandya and Kant (P6) have a better chance to approximate
this behavior than the hincar functions of the Whitney--Pagano theory (W3) or the Kwon
and Akin approach (K3). But the latter two at least represent some kind of mean shear
rotation. Unexpectedly large deviations result from the theory proposed by Senthilnathan
et al. (82). Once of the two functional degrees of freedom available in this theory is used to
represent the Kirchhofl rotations, which are subtracted in the drawing. Obviously, the
remaining one function is not sutlicient to treat layered orthotropic material in a satisfactory
manner,

Using the same scale, Fig. 4 shows the relations at a slenderness ratio of 10. It
makes clear that the deviation from the classical lamination theory vanishes quickly. For a
slenderness ratio of 25, where the transverse displacements are still some 4% off, the
difference in in-plane displacements between 3-D and the plate theories are within the
drawing accuracy.

The corresponding stresses are given in Figs S and 6. Again, only the upper half of the
laminate ts depicted. Symmetry conditions require anti-symmetry of the stresses o, ¢, and
1,,, Whereas the transverse shear stresses T, and t,, must be symmetric. Since the total
stresses rather than differences are plotted here, the discrepancies between the theories do
not look so spectacular. The normal stress distributions show the expected discontinuity

M3
Ps \/R%.Lz/h 0.'51/"‘ PG
K3 S2
w3
w3
o° 0°
S2 K3
P6 M3
30 ( 3D R3
90° < 90°
-O'.IS ") 0.‘25 -0’.25 (‘) 0.’25
(u=uas)/Yatme —= (v=var)/ Vet rmes —=—

Fig. 4. tn-plane displacement distribution, /it = 10.0.
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Fig. 5. Stress distribution, a/h = 5.0.

113

duc to the change in the material propertics. In-plane shear stiffnesses are equal for 0°- and
90"-layers, so that the z,,-functtons are continuous. Transverse shear stiffnesses of the 0'-
layer, however, differ from those of the 90°-layer due to the difference between v, and vy
That leads to the slope discontinuity ; the functions themselves are continuous because of

the enforced equilibrium conditions.
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Fig. 6. Stress distribution, a/h = 10.0.
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Figure 5 shows the stresses at a slenderness ratio of 5. With their linear approximations
the CLT. the Whitney-Pagano theory and Kwon and Akin’s approach have difficulties in
modeling the normal stresses. especially o, in the 0 -layer. This is much better with the
other theories. except that of Senthilnathan et al. (S2). As could be expected by comparison
with the in-plane displacements, the in-plane normal stresses in an orthotropic material
cannot be modeled in a satisfactory manner with one function only. In the case of in-
plane shear stresses all theories render acceptable results. [t is noteworthy that the linear
approximation theories (C1, W3, K3) give identical stresses t,, though their in-plane
displacement distributions are different. The transverse shear stresses 1. obtained with Cl
and S2 are somewhat high. In turn, the corresponding values for .. must be low to satisty
equilibrium. With the other theories the results are remarkably close to the exact 3-D
solution, especially if the relatively low slenderness is considered. The accuracy of all stress
components increases with increasing slenderness. At a ratio of 10, already. the differences
can hardly be displayed. as Fig. 6 shows.

The influence of unequal layer thicknesses is studied by means of a [0.90], laminate
with a thickness of & = [0.40, 0.10],. Transverse deflections are depicted in Fig. 7. As
compared with Fig. 2 the results obtained with Reddy’s (R3). Murthy’s (M3), and Kwon
and Akin’s (K3) theories are now worse. Also, Senthilnathan’s (S2) theory delivers larger
deviations from the 3-D results for slenderness ratios above 5. Only the curves marked W3
and P6 show equal or even smaller errors than before. These tindings are confirmed by the
graphs of the in-plane displacement distributions given in Fig. 8. As in Figs 3 and 4 Scn-
thilnathan’s theory (82) yields equal functions for (4 —uc ) ucpr,  and (=t p) Copy,
That explains its dithicultics in approximating the 3-D distribution. The same tendency
appears with the stresses which are given in Fig. 9. In particular the results obtained with

1.2 \
M3\
1.1 f—}- \
] PN
\ —
S0 F— ————t—
2 \ P6 — P
S 57 | L
09
rc
0.8
0 S 10 15 20 25 30
Slenderness ratio a/h ——=
Fig. 7. Center deflection of [0,90], CFRP plates, & = [0.40,0.10],.
t z/h
0.5
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K
3 “M3 /‘é
P&
w3
0° OO

\
P N L

-0.2% ] 0.2% -~0.25
(u=uar)/Vatme —= (v=var)/ Vot tmes ——

Fig. 8. In-planc displacement distribution, a/k = 5.0.
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Fig. 10. Center deflection of {0,90,0,90], CFRP plates, £ = [0.125],.

CLT and Senthilnathan’s theory now deviate somewhat more from the 3-D values as
compared with Fig. S,

Laminates with four layers only are not very common ; usually the number is much
larger. In order to study the influence of the layer number a [0, 90,0, 90), laminate with a
thickness of [0.125], was analyzed. Figure 10 shows the transverse deflections. Results
obtained with the classical lamination theory are slightly improved, whereas the theory of
Pandya and Kant (P6) is not as good as in the previous cases, especially for low slenderness
ratios. Senthilnathan’s theory (S2), however. gives excellent results. The reason becomes
obvious when inspecting the in-plane displacement distribution in Fig. 11. For a slenderness
ratio of 5, both u- and r-components show the zig-zagging mode as reported already by
Pagano and Hatfield (1972). It is difficult to model such a mode with low order polynomials
defined over the whole cross section. However, since the transverse shear effect is not very
different in the x- and y-directions, the one function w, of Senthilnathan’s theory is sufficient
to yield satisfying approximations. Besides, the zig-zagging dies out rapidly with increasing
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Fig. 12. Stress distribution, a/h = 5.0.

slenderness. At a/h = 10, which can still be considered a thick plate, the distribution of the
in-plane displacements is already relatively smooth.

Stress distributions, too, have improved, as 4 comparison between Figs 5 and 12 shows.
The in-plane normal stresses g in the 07-layers are still somewhat off, but notably both
transverse shear stresses are now quite close to the 3-D solution. With only minor deviations
in some cases that holds for all theorics. Even the CLT gives good transverse shear stresses
if determined via the equilibrium conditions (eqn (13)). An increasing number of layers
obviously reduces the errors that occur when calculating stresses from lower order theories.

4.2. Edge ratio effect

So far the edge ratio has been fixed according to eqn (16). The question arises, how
important the influence of this parameter on the accuracy of the different theories might
be. Some light can be shed on this matter by analyzing [0, 90], CFRP plates with equal layer
thickness and a fixed slenderness ratio of a//i = 15. The material properties are kept as
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Fig. 13. Center deflection of [0.90], CFRP plates. a'h = 15.0.

before (Table 3). but the edge ratio a/b is varied between 0.2 and 5.0. Figure 13 shows the
results.

For edge ratios between 0.2 and 2.0 the accuracy of nearly all theories does not change
very much ; only Senthilnathan’s theory (S2) has a relative error maximum at a/b = 0.87.
For higher edge ratios it follows Reddy's theory (R3), which is not surprising since the
development is based on this theory. With ratios over 2.0 the classical lamination theory
(C1) in particular deviates more and more from the 3-D results. To a much smaller degree
the same holds also for most of the other plate theorics. That can be explained by smalier
slenderness ratios in the p-direction. An edge ratio of ¢/h = 5 and a slenderness ratio of
alh = 15 lead to a slenderness in the p-direction of b/ = 3, which is alrcady quite small.
Results obtained with Reddy’s theory, however, are hardly affected by the edge ratio
viariation,

4.3, Material property relation effect

Material property relations will certainly have an effect on the deviation from the 3-D
results. Especially if the shear modulus is low compared to the in-plane modulus, then the
transverse shear effects become more important. For comparison a [0,90], laminate is
chosen with equal layer thickness and the material properties as listed in Table 5. For
E,JE, = 1 that represents an isotropic material. The edge ratio is determined by egn (16),
thus varying with the material properties between 1.0 and about 1.6.

Slenderness ratios of a/hr = Sand 10 are analyzed. Figure 14 shows the center deflections
fora/h = 5. With increasing £,/ E, the results increasingly deviate from the 3-D values. The
classical laminate theory yields unacceptable deflections even for isotropic material. For
high £, /E, ratios it is Senthilnathan’s theory (S2) which is furthest off.

Alrcady for a slenderness ratio of 10 the deviations from the 3-D results are much
smaller as cuan be seen by comparing Fig. 14 with Fig. 15. But the tendency remains the
same. [t is worth noting that the theorics by Kwon-Akin and Whitney-Pagano seem to be
less influenced by a change in the property relation than the others.

5. CONCLUSION

A great number of improved theorics for laminated plates has been proposed recently.
Information about the necessity and the efficiency of those theories, in which the dis-

Table S. Material properties for
property relation test
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placements are approximated by polynomials valid for the total thickness, was the aim of
the comparative study presented. It has revealed that for slender plates the classical lami-
nation theory provides satisfying results. Application limits certainly depend on material
property relations, but with standuard CFRP material a slenderness ratio of a/h = 25 led to
a center deflection which was already 5% off. For thicker plates a higher order theory is
recommended.

One further reason for using a higher order theory is due to the C'-continuity require-
ment imposed on trial functions by the Kirchhoff conditions. That makes it difficult to st
up simple finite element stiffness matrices. Therefore, quite often the elements are based
on the Whitney-Pagano theory which demands C? continuity only. However, improved
approximations for transverse shear stiffnesses are needed, especially in cases of high
modulus ratios. That is not required when applying Murthy's or Reddy’s theory, but owing
to the second derivatives in the strain-displacement relations they again need C'-continuous
functions.

Considering that it utilizes only two functional degrees of freedom, the theory intro-
duced by Senthilnathan et «¢f. has been shown to deliver good transverse displacements in
many cases. But the in-plane displacements and the stresses are not very accurate, especially
if the material is highly orthotropic with respect to transverse shcar. Kwon and Akin's
approach yields transverse deflections which are almost always inferior to the Whitney~
Pagano theory with improved approximations for transverse shear stiffnesses. More than
three functional degrees of freedom, as for instance proposed by Pandya and Kant, are
expensive and should be used only when necessary. That would be the case if transverse
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normal stresses are needed. As a final conclusion it can be stated that Reddy’s theory is a
good alternative if the classical lamination theory is no longer sufficient. Whitney-Pagano’s
theory with improved approximations for transverse shear stiffnesses is a good choice if
C'-continuity conditions are to be avoided.
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