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Abstract-An increasing number of higher order theories for the analysis of laminated plates has
been published recently. However, there is as yet a lack of rigorous information about a sensible
range of application. To help remedy this deficiency. seven different theories with displacement
functions valid for the complete plate thickness arc compared against the exact three·dimensional
elasticity solution. Reet'lngular plates with varying slenderness ratios. layer numbers and thick·
nesses. edge ratios. and material prllperty rel.llions arc examined. Comparing their displacements
and stress distributions reveals applic;lIion limits for the classical 1;lmination theory as well as
advantages and disadvantages of the respective higher .'rder theories. Therewith. guiding rules
evolve f,'f ;1 reliable and efficient bending analysis of layered composite p(;ltes.

I. INTRODUCTION

Plates out of fioer-reinforced materials have oeen ouilt and analyzed for many years. The
basis for the comput:ttions was. and still is in most cases. the.: su-calle.:d classical htmination
theory (CLT). a straightforward e.:xte.:nsion of the.: Kirchhol1' (I H50) plate theory towards
layered anisotropic nmterial. Both theories neglect transverse shear strains. the el1cct of
which is known to be small for slender plates. Fioer-reinfore.:ed material, however. is more
susceptible to transverse shear than its isotropic counterpart. thus reducing the range of
applicability of CLT. Adopting Mindlin's (1951) theory. Whitney and Pagano (1970)
relaxed this restriction. But the advancement had to be paid for by two additional functional
degrees of freedom: the shear rotations. Nevertheless. the theory is very popular with finite
element developers bcc.lUse it needs ell-continuous functions only. Unfortunately, there is
still some uncertainty concerning suitable transverse shear stitrnesses of layered composite
plates.

Recently, an increasing number of "higher order" theories for layered plates has been
published. The term indicates thut the displucement distribution over the plate thickness is
represented by polynomials of higher than lirst order. In general, a higher approximation
will lead to better results but also requires a more expensive computational effort. There is
as yet little information about advuntages and disudvHntages of the vurious approaches; a
potential user has hardly any criterion to decide which theory is most suitable to solve this
problem.

In order to provide some insight into the range of applicability Hnd the power of the
various theories, computational results will be presented. The study will be confined to
theories with continuous displacement functions across the complete plate thickness; layer­
wise approximations are not considered. Bending and transverse shear of symmetrically
stacked plates will be treated. The exact three-dimensional (3-D) elasticity solution after
Pagano (1970) will be applied as a yardstick. Since this solution is available only under
certain conditions the test problem cannot be arbitrary. It includes, however, varying
slenderness ratios. material property relations, edge ratios and layer numbers. Therewith,
it will be general enough so that a comparison with the corresponding results obtained from
the different plate theories can yield useful information about their scope.
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~ SPECIFICr\TIO;\;S OF EXA\lI;\;ED PLATE THEORIES

Plates an: ddined as structural components with a thickness much smaller than the in­
plane dimensions. That allows one to separate the dependency on the thickness direction
and to assume distribution functions for the displacements. It leads to two-dimensional
theories which reduces the computational effort required for the solution. A general for­
mulation based on this procedure is presented by Reddy (1987). The higher order theories
can be looked upon as special cases thereof. But in order to elucidate the ditrerences it is
necessary to describe the assumptions in more detail.

As a common and useful practice. the plate behav'ior will be desl.Tibed in the frame of
a Cartesian coordinate system (x.y . .::). where the x- and y-axis specify the reference plane
and the :-a\is runs in the thickness direction. Displacement components in x- . .1'- and :­
directions are named /I. r and II. respectively (ct'. Fig. 1).

Constant in-plane displacements would describe membrane deformations which are
not considered here. To allow for bending deformations the most simple approach is

J::} = J~ }J::}.:.
L, L'II 10

(I)

It forms the basis for the Whitney Pagano ( 1970) theory as well as for the CLT. Neglecting
the normal stresses in :-direction and eliminating the corresponding strains changes the
detiniti\ln of the bending stitrnesses, Only the treatment of transverse shear is different
between thl: two theories. CLT completely neglects transverse shear strains. which relates
/II and /'1 lolhl: derivativl:s of II':

(2)

Thl:rewith. the only funetion.1! degree of freedom left is lI'u. Whitney and P~lgano (I \)70)
allowed for transverse slH:ar str'lins but it is dillicult to define the corresponding stitrnesses.
The integral of the shear modulus over the thickness must be reduced because of non­
constant shear stresses. Several atlempts were made to derive generally valid reduction
factors. but Wittrick (1987) proved that for orthotropic material it is impossible to choose
ctrel:tive shear moduli independent of the displacement mode. Following a proposal by
Lehar (191-:4) the author (Rohwer, 1988) has assumed two cylindrical bending modes to scI
up a procedure whil:h provides improved values. In the following these values are used
exdusively when applying the Whitney-Pagano theory.

z,w

W =0\v =0 ...-
cr, =0

X.U

p ,cos~cosa
/ U a b

y.v

Fig. I. Test plate contiguration.
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Increasing the in-plane displacement approximation order to quadratic polynomials
would not make much sense. because the condition of vanishing transverse shear strains at
the upper and lower plate surface eliminates the quadratic components. Therefore. the
simplest higher order theories along this line are based on

(3)

A reduction of the number of functional degrees of freedom is desirable. but the way it is
performed differs between the different authors.

Murthy (1981) introduced new variables which he obtained by means of averaging in­
plane displacements and rotations through the thickness with the aid of a least-square
approximation. Thus he defined mean rotations

{P,} 12 flr.~ {II}
11, = /? -Ir ~ I' • =d=.

which are related to the initial functions by

{Il,} = {I~I}+ ~~~ {I~I}.
P. I, _0 IJ

The Iinal distribulion over =or the in-plane displacements then reads

{II} (5 5 \) {II,} (I 5 1) {iJlI'u/DX}
I' = 4=- 31t~ = /1,. + 4=- 3/1! = lJlI'u/2y'

(4)

(5)

(6)

Transverse shear strains based on these displacement functions arc more realistic
than in the case of the Whitney-Pagano theory. Accordingly. a correction factor for the
corresponding stitTnesses is no longer necessary. Murthy used the same equilibrium equa­
tions as Whitney-Pagano. Due to the definition of mean rotations, however. they cannot
be derived via the principle of virtual displacements.

Reddy (1984) used the condition of vanishing transverse shear strains at the upper and
lower surface not only to eliminate the quadratic displacement components but also to
replace II J and l' J :

(7)

The distribution over =of the in-plane displacements then reads

(8)

Linear and cubic terms of the displacements lead to two different types of bending and
torsional strains; they work at two ditTerent types of bending and torsional moments. And
there are also two different types of transverse shear strains and transverse shear forces.

Based on Reddy's theory. Senthilnathan et al. (1987) introduced a further reduction
of the number of functional degrees of freedom by splitting up the transverse displacements
\\.'0 into a bending and a shear contribution.



lOll K, ROHWER

(9)

The rotations are then identified with the derivatives of II'/> as follows:

Therewith. the displacement distribution over =reads

( 10)

( II)

As with Reddy's theory there are still two different types of bending and torsional strains
as well as transverse shear strains. The latter now depend on the contribution w, alone.

Other possibilities for a higher order theory evolve from a displacement approximation
of the type

( 12)

Such an approach was introduced by Whitney and Sun (1974) who still used transverse
shear reduction factors. Kwon and Akin (19X7) pointed out that vanishing shear strains at
== ±1I/2 requires 11'1 to be zero. Furthermore. they used the same condition to replace the
derivatives of the quadratic component II'~ by

(13 )

The remaining functions. 11'0. "1.1'\. an: identical to those from the Whitney-Pagano theory.
Transverse shear stilrnesses. however. are directly obtained; no reduction factor must be
in trod ueed.

Reissner (1975) introduced a combination of cubic in-plane and quadratic transverse
displacement approximations. It was applied to laminated plates by Lo et a/. (1977) and
further developed by Pandya and Kant (1988):

( 14)

The development can be extended further along this line whereby the number of functional
degrees of freedom is increased. However. since that number is of major influence on the
necessary computational effort it should be kept as low as possible.

Displacement approximations form the basis for the cited theories. But engineering
applications also require information about the stresses. The following comparison will be
confined to in-plane and transverse shear stresses. Transverse normal stresses are considered
small and therefore explicitly set to zero in most plate theories. That excludes examples
where the free-edge effect is of importance.

In-plane stresses (1,. (1. and !.n are in all cases obtained by multiplying the corresponding
strains with the in-plane stiffnesses. These stitfnesses may change from layer to layer
resulting in discontinuous stress functions over the plate thickness. It is noteworthy that
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Table I. Examined plate theories

ID Theoryiauthor Functions

CI CLT: Kirchhoff (1850) "'.
52 5enthilnathan el al. (1987) ""'~. ""'J
W3 Whitney-Pagano (1970) "'"0. U1.I.',

M3 Murthy (1981) "'0' P,. P,
R3 Reddy (1984) Woo U h t' l

K3 Kwon-Akin (1987) Woo u,. t")

P6 Pandya-Kant (1988) Wat K-'2' U 1, t'!, Uj, t')

3D Pagano (1970) .... u. t·

109

most theories require stiffnesses derived with the aid of a plane stress assumption. The
Pandya-Kant theory, however. uses the original three-dimensional constants.

With the exception of the CLT the transverse shear stresses could also be determined
via the material law. However. better and more comparable results can be expected from
an application of the equilibrium conditions:

r.,: =

f,,: =

_f(t1
U{ + (If ... ) d.:.
ex oy

f( i'!U." Df ...)_- --+- d_.
(ly Dx

(15)

Derivatives of the in-plane stresses are to be integrated over the thickness. This procedure
will be applied to all phlte theories. It allows us to obtain transverse shear stresses even for
the CLT.

Test calculations are performed with all theories listed in Table 1. The identifier (ID)
specified in column I indicates an author's name or a theory, and the number of functional
degrees of freedom involved. It should be pointed out that in many eases the theories have
been developed by several difl'erent authors; the reference cited here may serve as an
indication.

3. TEST PROBLEM DEFINITION

For the intended bending analysis a layered composite plate with rectangular ground
view is considered a suitable test case. Figure I shows the configuration. The edge lengths
in x- and y-directions are a and b, respectively; the total thickness is Iz. Only symmetric
stacking sequences are taken into account, with z = 0 forming the symmetry plane. The
angle of the fiber reinforcement direction is measured as a positive rotation around the z­
coordinate with the x-axis being the O'-direction. As a major restriction only 0'- and 90'­
layers can be applied; for fiber angles other than these no closed-form 3-D elasticity solution
exists.

Boundary conditions along the edges are some kind of simple support with prevented
displacements in both tangential directions and no stresses in the normal direction. With
the condition w = 0 prescribed for the whole edge surface, the well-known edge effect
cannot develop. At the upper and lower plate surface normal loads are applied; the
transverse shear stresses are assumed to vanish, whereas the normal stresses must equalize
the load. In orda to simplify the solution procedure the load is chosen to be distributed in
a double cosine manner. That allows a one-term approximation for every displacement
function. Furthermore, the stresses, too, are represented by single functions in the in-plane
coordinates which excludes stress concentration problems. Table 2 sums up the boundary
conditions. Interface conditions between the layers (k) and (k + I) are
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Boundary

l" = ±a 2
y = :r:. h2
== -h 2
== +112

K. RlJHW~K

Table 2. Boundary conditions

Condition

". = O. l" = O. rJ, = 0
". = O. u = O. rJ,. = 0

r" = O. t" = O. rJ, = -p.·,os(rrxl1)·,os(rry h)

r,,=O. r,,=O. rJ,= +p.,·WS(llX'I1)'COS(llyh}

Therewith. the test problem is sufficiently defined. Al:tual dimensions and material prop­
erties remain variable.

Pagano (1970) has shown that this type of problem can be solved ex,Ktly within the
scope of 3-D elasticity theory. For each layer the boundary conditions along the edges are
satisfied if trigonometril: functions of x and yare assumed for the three displ'Kements. In
=-direction exponential functions must be applied. leading to an eigenvalue problem of sixth
order. The unknown coetlkients of the complete solution are determined by interface an'd
boundary I:onditions at the upper and lower surface. respectively. That specifies a linear
equation system of 6n equations. where n is the number of layers involved .

.t. COMPUTATIONAL RESULTS

4.1. Slenderness (treC{
It is obvious that the Kirchhofrassumptions hold for very slender plates. II' the thickness

is small enough. away from the edges there is no room for developing (:onsiderable transverse
shear stresses between upper and lower surfal:es. where they must vanish because of equi­
librium conditions. Transverse normal stresses must exist at least to equilibrate the load.
But their strain energy contribution and therewith their inlluel1l:e on the global dis­
placements must remain small. Finally. the distribution of in-plane displacements will tend
to be linear; higher order distributions would result in self-equilibrating stresses which die
out rather soon in slender plates.

With decreasing slenderness ratios. however. these arguments gradually lose their
validity. El1ects which arc neglcl:ted in the classical lamination theory will obtain a growing
inl1uence. Depending on the degree of approximation some of these el1ects are taken can.:
of by the higher order theories mentioned above. But all higher order theories suflCr from
the inl:reased el10rt required for the solution. Therefore. as long as the classical lamination
theory yields satisl~tctory results it is the first choice.

Information about the range of applicability of the different theories with respect to
the slenderness ratio will be gathered by means of the example specifkd above. In the first
instance a stacking sequence of [0,901. and material properties as listed in Table 3 are
chosen. They represent a conventional carbon HT-fiber reinforced plastic (CFRP). The
plate thickness is kept to unity while the edge lengths are varying with a fixed ratio of

( 16)

where D.. and D,y arc the bending stifTnesses in x- and y-direction. respectively. Rather
than unity. this ratio was chosen so that both directions participate equally in carrying the
load. For the 3-0 solution half of the load is applied at the upper and the lower surfaces.
respectively. This has no significant influence on the deflection of the reference surface. but
results in an anti-symmetric displacement moue.

Table 3. Material properties for
slenderness test

£,. = I3K.O kN mm'
£r = 9.3 kN mm

Gu = .t.6kNmm··
I·/. r = 0.3
I'rr = 0.5
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Fig. 2. Cenh:r ddlccti\ln of(O. qOj. CFRP plates. II = 10.25.0.Z5)..

As the main indicator for adequacy of the respective theory the center plate deflection
is calculated and depicted in Fig. 2. For a varying slenderness ratio the calculated center
deflection is related to the corresponding value obtained in the 3-D analysis. The deviation
from unity, therefore, represents thc crror inherent in the ,tpproximatc theory. As could be
expected, the c1assk.t1 lamination theory (CI) delivers too small detkctions. The devi.ttion
incrcases with reducing slenderness. That can be traced b"ck to the neglect of transverse
she.tr. For slenderness ratios less th.ln 25 the errors exceed 5'Yo, which in some c"ses may
not be tolerable so that a higher order theory is recommended.

Initial choice for an improvement usually is to include transverse shear elTccts. With
Whitney p.tgano's theory (WJ), using tr'lOsvcrsc shear stilfnesses as proposed by thc
prcsent 'lUtlwr, the delleetions arc much bettcr. The fact that they arc overestimated may
be due to the eljuiJibriull1 <Ipproach .tpplied in the shear stiffness development. Excellent
accuracy is ohtained with the thcorics of Murthy (M3) and Reddy (R3), whereas Kwon
ami Akin's (KJ) is inferior. This can be explained by the cubic approxim4ltion of in-plane
displacements used by Murthy as well us Reddy. while Kwon and Akin proposed a line.tr
distribution only. Reasonably good arc the results obtained with the theory by Sel1lhilnathan
ct al. (S2). bearing in mind the reduced clrort required for the only two functional degrees
or freedom. Dest accuracy even at slenderness ratios .IS low as 2.0 is reached following
Pandya and Kant (P6), but that has to be: paid for by using six functional degrees of
freedom. Generally it can be st.lted from Fig. 2 that for slenderness ratios smaller thun 5 a
pl'lte theory is hardly suitable to trcat the given example.

Besides the center dellel:tion it is the distribution of the in-plane displacements and
stresses over the thickness whidl indicates the accuracy of the considered plate theory.
Therefore. these funl:tions will b..: camp'lred with those obtained from the 3-D theory.
Maximum values of stresses and displacements will uppcar at dilferent plate locations. They
arc put together in Table 4. To make th..: dj/ferences in the in-plane displacements obtained
with th..: various theories more visible. the corresponding values of the cbssical lamination
theory arc subtractcd. thereby eliminating a global rotation of the cross-section. The
r..:mainder is then scaled using the respective maximum displacement of the c1assiC4lllami­
nation theory. The stresses arc scaled with p, the maximum of the load function. and with
certain slenderness ratios.

Tanle.j. Loc;ltions ofmaltimum displacements
ano stresscs

Component Location

II. r \:
1\ tv;
(ft> fT.,

f"

x = ±al'!.•
:c = O.
.\' =0.
X = ±al'!..

•' =0
:1' = ±hl'!.
1'=0
:•. == ±h;2
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Fi~. J. In-plane displacement distribution. <lilr = 5.0.

Figure .3 presents the in-plane displacements for a slenderness ratio of 5. Only the
upper half of the cross-section is depicted; in the lower half the displacement distribution
is anti-symmetric. carrying no further information. That also holds for the 3-D solution.
which is marked by the thick line. Conspicuous is its pronounced nonlinearity which. in
case of the II-displacements. even shows a kink at the layer interl~lce. This certainly cannot
be modeled by the polynomials of the plate theories. The cubic functions as applied by
Murthy (M3l. Reddy (\U) and Pandya and Kant (1'6) have a better chance to approximate
this behavior than the linear functions of the WhitneY··P'lgano theory (W3) or the Kwon
and Akin approach (K3). But the latter two at least represent some kind of mean shear
rotation. Unexpectedly large deviations result from the theory proposed by Senthilnathan
('[ al. (52). One of the two ftllH:tion't1 degrees of freedom availahle in this theory is used to
represent the Kirchhotf rotations. whil:h are subtracted in the drawing. Obviously. the
remaining one function is not sutlicient to treat layered orthotropic material in a satisfactory
manner.

Using the same sl:ale. Fig. 4 shows the relations at a slenderness ratio of 10. It
makes dear that the deviation from the dassil:allamination theory vanishes quickly. For a
slenderness ratio of 25. where the transverse disphll:ements arc still some 4°Ic, 011'. the
dilli:rence in in-plane displacements between 3-D and the plate theories arc within the
drawing accuracy.

The corresponding stresses are given in Figs 5 and 6. Again. only the upper half of the
laminate is depicted. Symmetry conditions require anti-symmetry of the stresses (1,. (1. and
r n' whereas the transverse shear stresses r ,: and r,x must be symmetric. Since the' total
stresses rather than ditferences are plotted here. the discrepancies between the theories do
not look so spectacular. The normal stress distributions show the expected discontinuity

M3 IP6 R3 z/h
0.5

K3 52

W3

P6

-0.25 0 0.25

(u-ua.,)/Ua.,_ -

P6
r--------..,.:~...---.*

W3

52

3D

-0.25 0 0.%5
(v-va.,)/vcu_. -

h~. -I. In-plan.: Jisplac':l11.:nt JiSlrihulion. ailr = 10.0.
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~......."..-.t...... --,o.S

-0.) -0.2 -0.1 0
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-o.7S -0.$0 -0.2:1 0
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tl./h
._"l:'"'~ ,o.:I

-0.04 -0.02 0
lou-q/(pob/h') -
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,..... --:::~o.S
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RJ. MJ -0." -0.2 0
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Fig. 5. Slres.~ distribution. a/h = 5.0.

due to the ehange in the muterial properties. In-plane shear stiffnesses are equal for 0"- and
90"-layers. so thut the t",-functions are continuous. Transverse shear stilTnesscs of the 0"­
layer. however. differ from those of the 90"-layer due to the difference between V/.T and Vrr.

That leads to the slope discontinuity; the functions themselves are continuous because of
the enforced equilibrium conditions.

tl./h
WJ
~-:- ...,o.s

-0.) -0.2 -0.1 0
algmo-x/(po'/h') -

-0.75 -0.$0 -0.2:1 0
.Igmo-y/(pb'/h') -

t
r----.t'C'"""-:::--::::-~-:---, O.S

Cl.WJ, KJ

90°

-0.0" -0.02 0
tou-xy/(pob/h') -

tl./h
,-- "'71 0.5

Cl

WJ

-0.2 -0.1 0
tou-u/(po/h) -

P6

90° RJ
WJ

0
1043 52

KJ Cl

-0... -0.2 0
lou-yz/(pb/h) -

Fig. 6. Stress distribution. a/h ... 10.0.
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Figure 5 shows the stresses at a slenderness ratio of 5. With their linear approximations
the CLT, the Whitney-Pagano theory and Kwon and Akin's approach have difficulties in
modeling the normal stresses, especially (J, in the O-layer. This is much better with the
other theories. except that of 5enthilnathan et al. (52). As could be expected by comparison
with the in-plane displacements, the in-plane normal stresses in an orthotropic material
cannot be modeled in a satisfactory manner with one function only. In the case of in­
plane shear stresses all theories render acceptable results. It is noteworthy that the linear
approximation theories (Cl. W3, K3) give identical stresses In though their in-plane
displacement distributions are different. The transverse shear stresses I,: obtained with C I
and 52 are somewhat high. In turn, the corresponding values for II: must be low to satisfy
equilibrium. With the other theories the results are remarkably close to the exact 3-D
solution. especially if the relatively low slenderness is considered. The accuracy of all stress
components increases with increasing slenderness. At a ratio of 10. already. the differences
can hardly be displayed, as Fig. 6 shows.

The intluence of unequal layer thicknesses is studied by means of a [0.90]. laminate
with a thickness of II = [0.40, 0.10].. Transverse detlections are depicted in Fig. 7. As
compared with Fig. 2 the results obtained with Reddy's (R3). Murthy's (~IJ). and Kwon
and Akin's (K3) theories are now worse. Also. 5enthilnathan's (52) theory delivers larger
deviations from the 3-D results for slenderness ratios above 5. Only the curves marked W3
and P6 show equal or even smaller errors than before. These findings are confirmed by the
graphs of the in-plane displacement distributions given in Fig. 8. As in Figs 3 and 4 Sen­
thilnathan's theory (S2) yields equal functions for (11- "n.T)/IClT".." and (I" - I'u r) 1"(11",,,'

That explains its ditliculties in approximating the 3-D distrihution. The same tendem:y
appears with the stresses which are given in Fig. 9. In partintlar the results ohtained with

1.2 r--mr-.....,-----,.---....----,-----.-------,

3025s 10 15 20
Slenderness ratio a/h

Fig. 7. C.:nll:r ddl.:ction of [0. 901. eFR!' plates. h ~ [0.40.0.10/ ..

08 '------''------'-'-----"''----'-----'-------'
o

1.1

09 f-----j----t----I;;r""----+----t--------i

0' 10

'"'i'
"­
~

-0.25 0 0.25

(U-Ua.,)/......_ -
-0.25 0 0.25

(v-va..)/Va.._ -

Fig. X. In-rlane displacement distribution. alh ~ 5.0.
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Fig. 9. Stress distrihutinn. Il/Ir = 5.U.
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Fig. 10. Center deflection of [0. 90. o. 901. CFRP platcs. h = [0.1251,.

CLT and Senthilnathan's theory now deviate somewhat more from the 3-D values as
compared with Fig. 5.

Laminates with four layers only are not very common; usually the number is much
larger. In order to study the influence of the layer number a [0,90. O. 90]. laminate with a
thickness of [0.125h was analyzed. Figure 10 shows the transverse detlections. Results
obtained with the classical lamination theory are slightly improved. whereas the theory of
Pandya and Kant (P6) is not as good as in the previous cases. especially for low slenderness
ratios. Senthilnathan's theory (S2). however. gives excellent results. The reason becomes
obvious when inspecting the in-plane displacement distribution in Fig. II. For a slenderness
ratio of 5. both 11- and to-components show the zig-zagging mode as reported already by
Pagano and Hatfield (1972). It is difficult to model such a mode with low order polynomials
defined over the whole cross section. However. since the transverse shear effect is not very
different in the x- and .v-directions. the one function w. of Senthilnathan's theory is sufficient
to yield satisfying approximations. Besides. the zig-zagging dies out rapidly with increasing



116 K. ROHWER

90°

90°

-0.25 0 0.25

(u-u~...)/ua.,_ -
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Fig. II. In-plane displacement distrihution. a.h = 5.0.
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slenderness. At a{h = 10, which can still be considered a thick plate, the distribution of the
in-plane displacements is already relatively smooth.

Stress distributions. too, have improved, as a comparison between Figs 5 and 12 shows.
The in-plane normal stresses (f < in the a'-layers are still somewhat otT, but notably both
transverse shear stresses arc now quite close to the 3-D solution. With only minor deviations
in some cases that holds for all theories. Even the CLT gives good transverse shear stresses
if determined via the equilibrium conditions (eqn (15». An increasing number of layers
obviously reduces the errors that occur when calculating stresses from lower order theories.

4.2. Edge ratio ellect
So far the edge ratio has been fixed according to eqn (16). The question arises, how

important the influence of this parameter on the accuracy of the different theories might
be. Some light can be shed on this matter by analyzing [0.90). CFRP plates with equal layer
thickness and a fixed slenderness ratio of a/II = 15. The material properties are kept as
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Fig. 13. Center deflection of [0. 90J. CFRP plates. wh == 15.0.

before (Table 3), but the edge ratio alb is varied between 0.2 and 5.0. Figure 13 shows the
results.

For edge ratios between 0.2 and 2.0 the accuracy of nearly all theories does not change
very much: only Senthilnathan's theory (S2) has a relative error maximum at alh ::::: 0.87.
For higher edge ratios it follows Reddy's theory (R3), which is not surprising since the
development is b:'lsed on this theory. With ratios over 2.0 the classical lamination theory
(CI) in particular deviates more and more from the 3-D results. To a much sm:'lller degree
the same holds also for most of the other plate theories. That can be explained by smaller
slcnderm:ss ratios in Ihe y-direction. An edge ralio of a!" = 5 and .1 slenderness ratio of
alII = 15 lead to a slenderness in the y-direclion of hili = 3, which is alremly quite small.
Results ootailled with Reddy's theory, however, arc h.mlly affected hy the edge ratio
variation.

4.3. Material property relatioll effect
Material property relalions will certainly have an clrect on the devi'ltion from the 3-0

results. Especially if the shear modulus is low compared to the in-plane modulus, then the
transverse shear etlccts hecome more important. For comparison a [0,901, laminate is
chosen with equal layer thickness and the material properties as listed in Table 5. For
E1./£r = I that represents an isotropic m.tterial. The edge ratio is determined by eqn (16),
thus varying with the material properties between 1.0 and about 1.6.

Slenderness ratios ofa!II = 5 and 10 arc analyzed. Figure 14 shows the center deflections
for alII = 5. With increasing £1./£r the results increasingly deviate from the 3-0 values. The
classical laminate Iheory yields unacceptable dellections even for isotropic material. For
high £I.!Er ratios it is 5enthilnathan's theory (52) which is furthest olf.

Already for a slenderness ratio of 10 the deviations from the 3-D results arc much
smaller as can be seen by comparing Fig. 14 with Fig. 15. But the tendency remains the
same. It is worth noting that the theories by Kwon-Akin and Whitney-Pagano seem to be
less inllueneed by a ch'lOge in the property relation than the others.

5. CONCLUSION

A great number of improved theories for laminated plates has been proposed recently.
rnformation about the necessity and the efficiency of those theories, in which the dis-

Table 5. Material properties for
property relation test

ELlEr"" I to 50
ErlGu == 1.6

Vt.r == 0.3
Vrr == 0.3
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placements arc approximated by polynomials valid for the total thickness, was the aim of
the comparative study presented. It has revealed that for slender plates the classical lami­
nation theory provides satisfying results. Application limits certainly depend on material
property relations, but with standard CFRP material a slenderness ratio of a/II = 25 led to
a center deflection which was already 5°;;. o IT. For thicker plates a higher order theory is
recom mended.

One further reason for using a higher order theory is due to the ('I-continuity require­
ment imposed on trial functions by the Kirchhoff conditions. That makes it dillicult to set
up simple finite element stifTness matrices. Therefore, quite often the clements arc based
on the Whitney-Pagano theory which demands CO continuity only. However, improved
approximations for transverse shear stilrnesses arc needed. especially in cases of high
modulus ratios. That is not required when applying Murthy's or Reddy's theory, but owing
to the second derivatives in the strain-displacement relations they again need ('I-continuous
functions.

Considering that it utilizes only two functional degrees of freedom, the theory intro­
duced by Senthilnathan c{ al. has been shown to deliver good transverse displacements in
many cases. But the in-plane displacements and the stresses arc not very accurate, especially
if the material is highly orthotropic with respect to tnmsvcrse shear. Kwon and Akin's
approach yields transverse deflections which arc almost always inferior to the Whitney­
Pagano theory with improved approximations for transverse shear stitTnesscs. More than
three functional degrees of freedom, as for instance proposed by Pandya and Kant. are
expensive and should be used only when necessary. That would be the case if transverse
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normal stresses are needed. As a final conclusion it can be stated that Reddy's theory is a
good alternative if the classical lamination theory is no longer sufficient. Whitney-Pagano's
theory with improved approximations for transverse shear stiffnesses is a good choice if
CI-continuity conditions are to be avoided.
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